
 

 
 

 
 

Technical Report 138 
 
 
 

Cooperative Mapping for Automated 
Vehicles 
 

 
 
 
 
 
 
Research Supervisor: 
Todd Humphreys 
Wireless Networking and Communications Group 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
October 2017 

 
 

 
 

  
 
 
 
 
 
 
 
 
 
 



 

Data-Supported Transportation Operations & Planning Center 
(D-STOP) 

A Tier 1 USDOT University Transportation Center at The University of Texas at Austin 

 
 

          
 
 
D-STOP is a collaborative initiative by researchers at the Center for Transportation 
Research and the Wireless Networking and Communications Group at The University of 
Texas at Austin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 

 Technical Report Documentation Page  
1.  Report No. 

D-STOP/2017/138 
 2.  Government Accession No. 

 
 3.  Recipient's Catalog No. 

 
 4.  Title and Subtitle 

Cooperative Mapping for Automated Vehicles 
 5.  Report Date 

October 2017 
 6.  Performing Organization Code 

 
 7.  Author(s) 

Todd Humphreys, Matthew Murrian, Lakshay Narula, and Michael 
Wooten  

 8.  Performing Organization Report No. 

Report 138 

9. Performing Organization Name and Address 

Data-Supported Transportation Operations & Planning Center (D-
STOP) 
The University of Texas at Austin 
1616 Guadalupe Street, Suite 4.202 
Austin, Texas  78701 

10.  Work Unit No. (TRAIS) 

 

11.  Contract or Grant No. 

DTRT13-G-UTC58 

12.  Sponsoring Agency Name and Address 

Data-Supported Transportation Operations & Planning Center (D-
STOP) 
The University of Texas at Austin 
1616 Guadalupe Street, Suite 4.202 
Austin, Texas  78701 

13.  Type of Report and Period Covered 

 
 
14.  Sponsoring Agency Code 

15.  Supplementary Notes 

Supported by a grant from the U.S. Department of Transportation, University Transportation Centers 
Program. 
16.  Abstract 

 
Localization is essential for automated vehicles, even for simple tasks such as lanekeeping. Some 
automated vehicle systems use their sensors to perceive their surroundings on-the-fly, such as the early 
variants of the Tesla Autopilot, while others such as the Waymo car navigate within a prior map. The 
latter approach is beneficial in that it helps the system to expect the expected, that is, it relieves the 
system of perceiving static features. However, making and updating such accurate prior maps using a 
specialized vehicle fleet is expensive and cumbersome. Techniques for Simultaneous Localization And 
Mapping (SLAM) are an attractive solution to this problem. SLAM uses visual and other sensors for 
creating and updating maps as the robot/vehicle navigates within the map. This project explores the 
possibility of using multiple vehicles to perform cooperative SLAM for improving and updating the map 
formed using optical cameras, radar, IMU, and GNSS. It is assumed that raw data from these sensors can 
be shared among the vehicles over a wireless link either via V2V or V2I communications. 
 
17.  Key Words 

V2I, V2V, lanekeeping, AV, automated 
vehicle 

18.  Distribution Statement 

No restrictions. This document is available to the public 
through NTIS (http://www.ntis.gov): 

National Technical Information Service 
5285 Port Royal Road 
Springfield, Virginia  22161

19.  Security Classif.(of this report) 

Unclassified 
20.  Security Classif.(of this page) 

Unclassified 
21.  No. of Pages 

XX 
22.  Price 

 
  Form DOT F 1700.7 (8-72)                       Reproduction of completed page authorized 

 
 



 

 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the information presented herein. This document is 
disseminated under the sponsorship of the U.S. Department of Transportation’s 
University Transportation Centers Program, in the interest of information exchange. The 
U.S. Government assumes no liability for the contents or use thereof. 

The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the information presented herein. Mention of trade names or 
commercial products does not constitute endorsement or recommendation for use. 

 
 

Acknowledgements 

The authors recognize that support for this research was provided by a grant from the 
U.S. Department of Transportation, University Transportation Centers.  

 
. 



COOPERATIVE MAPPING FOR AUTOMATED VEHICLES
D-STOP REPORT – 05 OCT 2017

TODD HUMPHREYS, MATTHEW MURRIAN, LAKSHAY NARULA, AND MICHAEL WOOTEN

Abstract. Localization is essential for automated vehicles, even for simple tasks such as lane-
keeping. Some automated vehicle systems use their sensors to perceive their surroundings
on-the-fly, such as the early variants of the Tesla Autopilot, while others such as the Waymo
car navigate within a prior map. The latter approach is beneficial in that it helps the system to
expect the expected, that is, it relieves the system of perceiving static features. However, making
and updating such accurate prior maps using a specialized vehicle fleet is expensive and cum-
bersome. Techniques for Simulatneous Localization And Mapping (SLAM) are an attractive
solution to this problem. SLAM uses visual and other sensors for creating and updating maps
as the robot/vehicle navigates within the map. This project explores the possibility of using
multiple vehicles to perform cooperative SLAM for improving and updating the map formed
using optical cameras, radar, IMU, and GNSS. It is assumed that raw data from these sensors
can be shared among the vehicles over a wireless link either via V2V or V2I communications.

1. Introduction

All major automakers today are engrossed in the development and integration of software and
sensors that enable automated vehicles. Localization within a map is one of the primary oper-
ations that automated vehicles must perform, either to navigate from one location to another,
or, more interestingly, to interact with their surroundings within a mapped environment. Prior
high-definition digital maps allow the vehicle to expect the expected, that is, they relieve the
system of the need to classify static features.

Satellite-based navigation sensors have historically been the unrivalled sensor of choice for
localization. However, the high-reliability decimeter-level accuracy demanded by automated
vehicles for lane-keeping and other applications has significantly changed this landscape. In
fact, in most automated vehicles being developed, the GPS/GNSS system is a secondary sensor
whose only role is to loosely constrain (within a few meters) the primary sensor data to a
global reference when building a digital map. Other vehicular sensors such as visual cameras
and LiDAR are being used as primary systems for vehicle localization within the prior map.

The need for accurate digital maps has spurred dedicated map-making campaigns involving
fleets of specialized mapping vehicles. Mapping vehicles typically employ state-of-the-art high-
performance sensors that are too expensive to be installed on consumer vehicles. Although these

Date: October 5, 2017.
1



2

exquisite maps do enable sub-decimeter-accurate within-map localization, their construction
and use comes with important limitations:

(1) In current practice, sub-decimeter vehicle localization within a prior map is critically
dependent on optical cameras and LiDAR. LiDAR is known to fail in heavy rain, snow,
and fog. Optical cameras are vulnerable to poor lighting conditions and are easily
blinded by bright light. Moreover, the previously-mapped roadside environment can be
significantly altered by the build up of snow or sand. Thus, even after severe weather
subsides, a vision- and LiDAR-dependent system may have difficulty locating the host
vehicle within the prior map. Such weather-induced difficulties for within-map localiza-
tion cannot be dismissed as negligibly rare: many populated regions of the globe are
routinely subject to punishing weather.

(2) While mapping using a specialized fleet is feasible for urban cities, it is time-consuming
and cumbersome to map, and, more importantly, maintain the maps of entire coun-
tries/continents. A key enabler for large-scale up-to-date maps will be enlisting the
help of the very vehicles who need the map – consumer vehicles – to build and update
the map. However, consumer vehicles will only be equipped with low-cost consumer-
grade sensor suites. The performance of such sensors in creating high-precision maps
has not been explored.

(3) Automated vehicles would also need accurate information on the position, velocity, and
intent of their neighboring vehicles. While this information can be inferred using the
sensors on the vehicle, in certain situations, for example at a blind corner or during a left
turn manouver, it might be beneficial for the vehicles to communicate this information
to each other on a wireless channel. For data exchange between vehicles, position and
velocity information must be referenced to a common coordinate frame – preferably a
global reference frame. However, the maps commonly generated using optical cameras
and LiDAR are, as mentioned earlier, only loosely tied to the global frame (e.g., WGS-
84), with an exact correspondence that differs from provider to provider: Waymo, Uber,
and HERE would each assign different coordinates to the same physical object, and these
coordinates could differ by a meter or more – far too large a discrepancy for coordinated
automated driving.

Unlike optical cameras and LiDAR, GPS/GNSS is agnostic to weather elements, lighting con-
ditions, etc. Thus, it is a natural complement to vision and LiDAR-based sensing. GNSS works
in all weather conditions and is globally referenced. Its chief impairments, signal blockage and
multipath, mostly occur in urban areas where vision, LiDAR, and radar sensors can aid the
mapping and localization solution. Also, as a globally-referenced source of absolute position
and velocity, precise GPS/GNSS is very useful for sharing location and velocity data among
vehicles, and for calibrating the other sensors. For example, it can be used for calibration of
extrinsic and intrinsic camera parameters.

Radar is another sensor that works in all weather conditions. It remains useful for collision
avoidance in poor weather, but may not be accurate enough for tight lane-keeping and for
locating the vehicle in open areas where roadside features are scarce. Nonetheless, it provides



3

information that is useful for all-weather navigation. Surprisingly, radar has remained mostly
unexplored for the purposes of mapping and localization.

In this project, we explore a sensor fusion scheme using the GNSS standard positioning service
(SPS), radar, and visible-light cameras for decimeter-accurate globally-referenced collaborative
sparse mapping using low-cost sensors, and for decimeter-accurate globally-referenced localiza-
tion in the resulting map.

The rest of this report is organized as follows: enabling technologies for collaborative mapping,
and related prior work is outlined in Section 2. Section 3 discusses the progress made towards
collaborative mapping as a part of this project. Our plan for future steps is detailed in Section 4.

2. Enabling Technologies and Prior Work

This section reviews the most important enabling technologies for solving the problem of col-
laborative mapping. A brief review of each technology is provided, along with references to
prior work that is relevant to the problem at hand.

2.1. Visual Simultaneous Localization and Mapping (SLAM). Visual SLAM is a tech-
nique that uses images captured from a visible-light camera as the source of information to
estimate the pose of a vehicle or a robot in an environment, while at the same time creating a
3-dimensional representation of the environment from the 2-dimensional images.

Visible-light camera(s) are a part of every autonomous driving vehicle in conception or produc-
tion. With modest power consumption and at a low cost, these cameras enable some of the
most critical operations such as

• Local motion planning : steering control, velocity control, etc.
• Obstacle avoidance: obstacle detection, semantic segmentation, road detection, etc.
• Lawful driving : sign and signal detection and recognition, etc.

Visible-light cameras, in essence, are the eyes of an autonomous vehicle. In fact, some au-
tonomous driving systems use end-to-end machine learning algorithms to directly control the
vehicle based primarily on the camera feed [1]. Some autonomous vehicles also employ ac-
tive sensors such as LiDAR to assist in the above operations. Active sensors can simplify the
underlying estimation and mapping stages. Such simplification is achieved, in part, by more
complex data acquisition, that is, by recovering dense 3-dimensional point clouds using laser
scans. However, an important drawback of such active sensors is that they are expensive at
the time of writing, and consume much more power than passive sensors such as visible-light
cameras and GPS/GNSS. As a result, sensors such as LiDAR were not considered for solving
the SLAM problem in this project.



4

The problem of visual SLAM has been studied extensively in the computer vision community,
and many effective systems have been proposed [2–10]. In order to choose one of these designs,
we had to answer the following two questions:

(1) Sparse or dense? : Visual SLAM algorithms are usually classified as spare, semi-dense,
and dense. Sparse SLAM algorithms [2–4] use only distinctive features such as corners
and edges, while dense SLAM [6, 10] algorithms use every pixel in the image. For the
purpose of localization, the sparse point cloud generated using sparse SLAM algorithms
is sufficient. Dense reconstruction is more appealing to the human eye, but does not
provide any tangible benefit to vehicle localization, while consuming much more com-
putational resources. Moreover, it has been shown that there is an evolutionary path
to dense 3-dimensional reconstruction once a sparse map has been generated [4]. As a
result, we prefer the sparse feature-point-based SLAM in this project.

(2) Filtering or batch estimation? : In a famous paper, Strasdat [11] concluded that keyframe
bundle adjustment (batch non-linear optimization) outperforms filtering techniques such
as the EKF, and gives the most accuracy per unit of computing time. This paper noted
that the having a high number of features points per frame improves accuracy more than
having a large number of frames. Most recent state-of-the-art visual SLAM algorithms
use the bundle adjustment approach in favor of sequential filtering. As a result, we
consider bundle adjustment-based non-linear optimization for visual SLAM.

In this project, we use the bundle adjustment technique for nonlinear optimization. Some basics
of bundle adjustment are discussed next.

2.1.1. Bundle Adjustment. Bundle adjustment is the problem of refining a visual reconstruction
to produce jointly optimal 3D structure and viewing parameter (camera pose and/or calibra-
tion) estimates. It is a common technique used in photogrammetry and computer vision for
Structure from Motion (SfM) and 3-dimensional reconstruction. A tutorial paper on bundle ad-
justment by Triggs et al. [12] is an excellent reference. Appendix 6 of the Hartley & Zisserman
textbook [12] is another good resource on this topic.

Map point 3D locations x
pj
S ∈ R3 and keyframe poses (xCiS , q

Ci
S ), where S stands for the SLAM

frame, pj is the jth map point, and Ci is the ith keyframe, are optimized minimizing the
reprojection error with respect to the matched keypoints xi,j ∈ R2. The error term for the
observation of a map point j in a keyframe i is

eij = xij − πi(x
pj
S ,x

Ci
S , q

Ci
S ) (1)

where πi is the projection function

πi(x
pj
S ,x

Ci
S , q

Ci
S ) =

[
fiu

xij

zij
+ ciu

fiv
yij
zij

+ civ

]
(2)

[xij, yij, zij]
T = R

(
qCiS
)T (

x
pj
S − xCiS

)
(3)

where R(·) denotes the rotation matrix corresponding to the argument, and (fiu, fiv) and
(ciu, civ) are the focal length and principal point associated to camera i. The cost function



5

to be minimized is

C =
∑
ij

ρ(eT
ijΩ

−1
ij eij) (4)

where ρ can be the standard least squares cost function or a more robust cost function like
Huber or Tukey, and Ωij = σ2

ijI2×2 is the covariance of the feature measurements.

When solving the minimization problems arising in the framework of bundle adjustment, the
normal equations have a sparse block structure owing to the lack of interaction among param-
eters for different 3D points and cameras. This can be exploited to gain tremendous compu-
tational benefits by employing a sparse variant of the Levenberg Marquardt algorithm which
explicitly takes advantage of the normal equations zeros pattern, avoiding storing and operating
on zero-elements.

2.1.2. ORB-SLAM2. ORB-SLAM2 [4] is a feature-based SLAM system that operates in real
time, in small and large, indoor and outdoor environments. ORB-SLAM2 supports monocular,
stereo, and RGB-D cameras, and has features like map reuse, loop closing, and relocalization.
The source code for this system is open-source. This code was used as a basis for visual SLAM
development in this project. Some of the important algorithms and terminology related to
ORB-SLAM2 are summarized here.

Oriented FAST and rotated BRIEF (ORB) are binary features invariant to rotation and scale
(in a certain range), resulting in a very fast recognizer with good invariance to viewpoint.
ORB-SLAM2 uses the ORB features for all tasks: tracking, mapping, relocalization, and loop
closing. This makes the system more efficient, simple and, reliable.

ORB-SLAM2 employs two major containers to process the visual data: map points and
keyframes. Each map point pj stores

• Its 3D position x
pj
S in the SLAM coordinate system.

• The viewing direction nj, which is the mean unit vector of all its viewing directions
(the rays that join the point with the optical center of the keyframes that observe it).
• A representative ORB descriptor Dj, which is the associated ORB descriptor whose

Hamming distance is minimum with respect to all other associated descriptors in the
keyframes in which the point is observed.
• The maximum dmax and minimum dmin distances at which the point can be observed,

according to the scale invariance limits of the ORB features.

Each keyframe Ki stores

• The camera pose (xCiS , q
Ci
S ), which is a rigid body transformation that transforms points

from the camera to the SLAM coordinate system.
• The camera intrinsics, including focal length and principal point.
• All the ORB features extracted in the frame, associated or not to a map point, whose

coordinates are undistorted if a distortion model is provided.



6

Map points and keyframes are created with a generous policy, while a later very exigent culling
mechanism is in charge of detecting redundant keyframes and wrongly matched or not trackable
map points. This permits a flexible map expansion during exploration, which boost tracking
robustness under hard conditions (e.g. rotations, fast movements), while its size is bounded in
continual revisits to the same environment, i.e. lifelong operation.

The ORB-SLAM2 system runs three threads in parallel: tracking, local mapping and loop
closing. The tracking is in charge of localizing the camera with every frame and deciding when
to insert a new keyframe. The local mapping processes new keyframes and performs local BA
to achieve an optimal reconstruction in the surroundings of the camera pose. The loop closing
searches for loops with every new keyframe. If a loop is detected, a similarity transformation
informs about the drift accumulated in the loop.

Covisibility information between keyframes is represented as an undirected weighted graph.
Each node is a keyframe and an edge between two keyframes exists if they share observations of
the same map points (at least 15). To operate in real-time, ORB-SLAM2 performs a windowed
BA. The local BA optimizes the currently processed keyframe, Ki, all the keyframes connected
to it in the covisibility graph, Ki, and all the map points seen by those keyframes. All other
keyframes that see those points but are not connected to the currently processed keyframe are
included in the optimization but remain fixed.

2.2. Radar Odometry and SLAM. Even though radar is now a common sensor on most
luxury cars, the utility of radar for localization has not been explored in depth. Schuster et
al. [13] have recently proposed radar SLAM with a graph optimization framework that is very
similar to visual SLAM. However, they present it as a standalone radar system, and do not
integrate it with visual maps.

They use multiple short range radars around the vehicle to make a map of a parking lot. Their
approach to feature detection uses time history with odometery to build a “measurement grid”
with geographic segmentation and intensity or occupancy values determined by the number of
detections within each segment. Finally, as with visual SLAM, a graph optimization library is
used. Localization accuracy within 1 meter is reported when the environemnt has not changed
very significantly.

Barjenbruch et al. [14] present a radar odometry technique that also shows promising results.
They formulate the problem as an optimization, and match the point clouds obtained in con-
secutive radar scans. Errors of 0.03 m/s in velocity, 0.435 degrees/s in yaw, and 0.37% position
error with distance travelled is reported.

In conclusion, most common method of using radar for mapping involves building occupancy
grids. These do not scale well for global maps because they segment the world into geographic
block which specify the resolution and require present/not present for every block. So if a single
bit is used to represent that information on a 1 cm 2D grid, the map will use storage on the
order of 3 GB per square mile while, the majority of the grid will simply say “not occupied”
(i.e. 0). For example, a map of the city limits of Austin, TX would need 815 GB.



7

Odometry (or Ego-Motion) based techniques using radar sensors show promise and should
fuse well with SLAM techniques because the referenced work takes a similar approach of least
squares minimization to determine the translation and rotation of the vehicle with respect to
fixed landmarks. This is analogous to feature based tracking to determine translation/rotation
of the vehicle with visual cameras. In this case, the radar has a direct measurement of delta
position and velocity and an indirect measurement of heading.

There is no literature on fusing visible-light cameras and FMCW radar to aid with map making
or augmentation of visual SLAM routines. We believe there is room for contribution here.

3. Project Accomplishments

3.1. The Sensorium. In order to collect data for this project, we put together a sensor suite,
which we named the Sensorium. The Sensorium can be mounted on any vehicle, and can be
powered using a car battery. Figure 1 shows the Sensorium mounted on a Toyota 4Runner.

Figure 1. The Sensorium mounted on a Toyota 4Runner.

3.1.1. Hardware. The Sensorium is equipped with a stereo camera rig, two dual-frequency
GNSS antennas, an automotive radar, and a smartphone-grade IMU. A custom in-house GNSS
front-end, called the RadioLynx, samples and pre-conditions the signals received from the GNSS
antennas. The RadioLynx also serves the purpose of triggering the cameras, which enables us
to time tag the images with GPS time to within a few tens of nanoseconds.

The Sensorium also has an Intel NUC installed to process all the data captured using these
sensors. The NUC also runs GRID, our in-house software-defined precise GNSS receiver. The



8

precise GNSS will be used as a ground truth in the accuracy analysis of the results. Precise
GNSS is enabled by the Longhorn Dense Reference Network, a unique reference network that
we have put together in Austin TX to provide ionospheric and tropospheric corrections to
mobile receivers such as the Sensorium.

Figure 2 summarizes the hardware components of the Sensorium.

Figure 2. Hardware components of the Sensorium.

3.1.2. Software Architecture. The architecture of the sensor fusion system is built around the
Robotics Operating System (ROS). We make heavy use of the ROS topic architecture to com-
municate between the different nodes in the sensor fusion system. This enables us to easily add
another sensor and/or only use a subset of the existing sensors without making any significant
changes to the communication between nodes.

We have also developed a software suite for collating and quality-checking the data produced
by the sensors. A radar parser utility parses radar messages from the CAN bus. An image
grabber grabs and stores up to 30 fps data from the stereo camera rig and publishes them on
a ROS topic. These images can be used for real-time processing or can be stored to a ROS
bag. The image grabber also verifies that no frames are being dropped. We also log raw IF
GNSS data for offline processing. In addition, the IMU data is also stored. We also have a
commercial (ublox) GNSS receiver which is fed the same GNSS signals as the RadioLynx. We
also store the output of this receiver.

For a sensor fusion system, it is critical that all data be time-synchronized. To achieve this,
we set up an NTP server on the NUC that is driven by the GPS timing output of GRID. In
addition, we trigger the cameras directly from the RadioLynx board. With all this in place, all
data from all sensors is synchronized to within a fraction of a millisecond.

3.2. Improvements to UT GRID. In order to enable collaborative mapping, we have had to
customize GRID to enable more functionality. This section outlines some of the improvements
we have made to GRID.



9

3.2.1. Loosely-coupled GNSS/IMU. Contrary to the usual GNSS applications, just the 3D po-
sition of the vehicle is not sufficient to generate maps. One must have knowledge of the full
6-DoF pose of the vehicle. We use our dual-antenna set up and the IMU to estimate the full
pose of the vehicle in ECEF. It must be noted that we do not make use of LDRN for this, and
our technique is a blend of code and carrier positioning but is not dependent on any outside
reference network.. The IMU is loosely-coupled with GNSS in a complementary filter. The
implementation follows a standard approach which can be found in [15].

3.2.2. PPP-Lite. We have transformed GRID SPS receiver into a code-phase precise point
positioning (PPP) [16] engine. This futher helps to constrain visual SLAM without needing a
reference network. PPP-Lite can be used in real-time (for GPS signals; not yet for Galileo).
We now use precise orbits and ionospheric models provided by the International GNSS Service
(IGS) to refine the SPS solution. (PPP-Lite is in testing stages, and has not been used for the
results presented in the next section.)

3.3. Collaborative Visual Mapping. This section details the work done in this project
towards the goal of collaborative mapping based on visual SLAM. As mentioned in Section 2,
we developed on the open-source ORB-SLAM2 system.

3.3.1. Map Reuse. To enable collaborative mapping for vehicles driving through an area non-
concurrently, they must be able to save and load the map created during the first session.
Unfortunately, ORB-SLAM2 only supports single session mapping. As a part of this project,
we developed the feature of saving and loading maps in to ORB-SLAM2.

As explained in Section 2, map points and keyframes are the basic containers used by ORB-
SLAM2. These containers are inter-linked through pointers, based on the covisibility criterion.
In order to reuse the saved map, we must also save all these linkages, along with the basic
information such as camera poses and map point positions. Similarly, when loading the map,
we must recreate all the pointer-based connections in order to perform bundle adjustment on
these nodes.

Following the ROS-based architecture discussed above, we make the saved map available on a
ROS topic. This published map can be saved by another node, and can also be used by any
other node.

Figure 3 shows how multi-session or crowd-sourced mapping is enabled by the ability to save
a map and load an existing map prior to the next session. The disconnected sections combine
to form a self-consistent whole due to common ECEF reference, as described next.

3.3.2. GNSS-Aided-Visual SLAM. Visual SLAM algorithms build the map in a local frame.
These maps cannot be intelligibly shared among vehicles. Furthermore, visual SLAM algorithms
are known to drift with distance travelled. GNSS, while not very accurate under multipath,
does not drift. GNSS/INS measurements can be used to correct the drift in visual SLAM.



10

(a) Map created after first session. (b) Map created after loading the first map
and appending to it.

Figure 3. Multi-session or crowd-sourced mapping enabled by map saving and
loading.

The GNSS-aided-visual SLAM implementation in this project follows the design proposed
in [17]. An overview of the system is presented in Figure 4.

Figure 4. GNSS/INS-aided-SLAM system block diagram.

Following the GNSS/INS implementation described earlier, there are four coordinate frames
in the system: the GNSS/INS frame, Ii, the camera frame, Ci, the SLAM frame, S, and the
global Earth Centered Earth Fixed (ECEF) frame, G. The camera frame is centered at the left
camera center, with z-axis along the boresight, x-axis pointing towards the right, and y-axis
pointing downwards. The SLAM frame S is centered and oriented such that the position of the
first keyframe (prior to any optimization) is at the origin and the attitude quaternion of the
first keyframe is the identity quaternion. Thus, S is fixed relative to G, but Ii and Ci change
relative to G as the vehicle moves. The subscript i denotes the ith keyframe.

The state vector to be estimated is given as

X =
[
xC1S qC1S . . . xCNS qCNS xp1

S . . . xpM
S
]T



11

where N is the number of keyframes under optimization, M is the number of map points under
optimization, and x

pj
S is the 3D position of the jth map point in the SLAM frame. One may

argue that the state can directly be estimated in the ECEF frame G. However, our experiments
suggest that the large numbers associated with ECEF positions can cause numerical stability
issues.

The GNSS/INS provides measurements of the position (x̃IiG ) and attitude (q̃IiG ) at the IMU

center, and not the camera center ((̃·) indicates a measurement). However, the pose of the
camera in the IMU frame Ii, (xCiIi , q

Ci
Ii), is the same for all i and can be physically measured or

estimated. Note that this transformation must be known accurately, since any errors will reflect
directly as errors in the map. Also note that as of now, the full 6-DOF pose provided by the
GNSS/INS is only directly used for determining the SLAM frame S. Only the global position
output of the GNSS/INS is used directly as measurements in the current implementation,
with the attitude being used indirectly, as shown in the equations below. We transform the
GNSS/INS position to get a direct measurement of the camera center in S as follows:

x̃CiS = R
(
qGS
)
x̃CiG + xGS

where

x̃CiG = x̃IiG +R
(
q̃IiG
)
xCiIi

The measurement covariance is also transformed to S using the appropriate rotations. Numer-
ical differentiation is being used to compute the partial derivatives of the measurement model
with respect to the state elements. Using the attitude as a separate direct measurement is
being worked on.

The images captured by the stereo rig are rectified before being passed to the estimator. The
feature measurement on the 2D image plane is modeled as explained in Equation 2. The
covariance associated with these measurements is provided by the ORB feature detector.

Figure 5 shows the output of (a) GNSS/INS, (b) GNSS/INS-aided-SLAM, and (c) SLAM-only
plotted using Google Earth. The SLAM-only output is plotted on this ECEF map by passing
it through the same S to G transform as used for the GNSS/INS-aided-SLAM output. It is
clear that the SLAM-only solution drifts away from the road. With GNSS/INS measurements,
the drift of visual SLAM is contained.

Figure 5 does not show the altitude variation for the three trajectories. This information
is shown in Figures 6a and 6b. In Figure 6a, observe how the GNSS/INS output towards the
beginning (right) is discontinuous jumps wildly in altitude. This is because the IMU biases may
not have been estimated with high accuracy in the beginning of the dataset. Also, the vehicle
was stationary at those locations, and it is common for the SPS GNSS output to wander during
stationary scenarios. Even so, the GNSS/INS-aided-SLAM output is smooth. In Figure 6b,
observe that the SLAM-only trajectory has a downward pitch as compared to the GNSS/INS-
aided-SLAM trajectory. This is because the SLAM-only system is only provided an initial
pose, and any error in that single epoch is not corrected because no further measurements are
provided. On the other hand, with GNSS/INS-aided-SLAM, the continuous pose measurements
are able to correct any small errors in the initial pose. This example reaffirms our belief that



12

Figure 5. Google Earth visualization of the GNSS/INS (yellow), GNSS/INS-
aided-SLAM (green), and SLAM-only (red) trajectories.

150

30.3025

155

30.302 -97.733
-97.7335

Latitude (degrees)

-97.73430.3015

Longitude (degrees)

160

-97.7345

A
lt
it
u
d
e
 (

m
e
te

rs
)

-97.735

INS and INS-aided-SLAM

30.301
-97.7355

-97.736

165

170

INS

INS-aided-SLAM

(a) 3D visualization of GNSS/INS and
GNSS/INS-aided-SLAM trajectories.

120

125

130

135

140

145

150

155

30.3025

A
lt
it
u
d
e
 (

m
e
te

rs
)

160

165

170

30.302

INS-aided-SLAM and SLAM-Only

Latitude (degrees)

30.3015 -97.733

Longitude (degrees)

-97.734
30.301 -97.735

-97.736

INS-aided-SLAM

SLAM-Only

(b) 3D visualization of GNSS/INS-aided-
SLAM and SLAM-only trajectories.

combined minimization of GNSS/INS and SLAM cost functions is beneficial for the overall
system.

However, the GNSS/INS-aided-SLAM results shown in Figure 5 were not obtained using the
default ORB-SLAM2 implementation of windowed BA. It was found that the ORB-SLAM2
windowing technique, while not incorrect, is ill-suited to integration with GNSS. The reason



13

Figure 7. ORB-SLAM2 windowing scheme is not suitable for GNSS/INS-
SLAM integration.

is explained in Figure 7. The ticks on the horizontal axis represent keyframes, while the stars
represent map points. The right-most tick represents the latest keyframe. As mentioned earlier,
ORB-SLAM2 uses covisibility information to choose windows for BA.

Green color in Figure 7 indicates vertices (keyframes and map points) that will be optimized in
the windowed BA iteration. Red indicates vertices that participate in BA, but are held fixed
and will not be optimized. Blue indicates vertices that do not participate in windowed BA.
The most recent vertices are green, as expected. A large number of red vertices trail them. The
red tail is inherently much longer than the green head. The reason is that a keyframe must
share at least 15 map points in common with the latest keyframe in order to be green, but only
needs to see any one of the green map points in order to be red. The red-circled green stars are
the map points that are visible from both red and green keyframes. The red keyframes, being
fixed, do not allow large movements in the red-circled green map points. This ensures that BA
is only able to optimize the green vertices such that the overall result is smooth. However, this
is not ideal for our GNSS-SLAM integration because the optimizer does not get to revisit the
keyframes that may have been incorrectly position but have now been fixed. Consequently, the
windowed BA scheme follows the GNSS/INS trajectory in the beginning, when there are no
fixed vertices, but is stuck with the SLAM-only trajectory once a history of fixed (red) vertices
prevents any deviation from the SLAM tracking thread.

Following the above discussion, global BA was implemented and performed at each keyframe
step. The results were shown in Figures 5, 6a, and 6b, but the algorithm runs much slower, as
expected.

In order to provide a longer window to BA while still keeping the computation manageable,
one may consider other techniques such as fixed time- or distance-based windowing.



14

• Fixed time window : In this approach, a window is taken over all keyframes spawned in
the last N seconds. However, this would fail if the vehicle were to stay stationary for a
while.
• Fixed distance window : In this approach, a window is considered over all keyframes

that appear within some radius of the approximate location of the current keyframe.
However, this may include unrelated keyframes, such as ones from another parallel
street, that may not influence the current map under consideration at all.
• Fixed keyframe-length window : In this approach, one could consider a window over the

latest N keyframes. However, this does not extend well to the case where the same
location is visited again. This is also the case with a fixed time window.

Another advantage of the default covisibility-based windowing is that it automatically extends
to the case when a mapped area is visited again, that is, keyframes from a previous session
are automatically connected to the current keyframes if they share at least 15 map points in
common. Thus, it makes sense to use the covisibility-based approach but we must modify
it such that a larger window of keyframes is available for optimization. To achieve this, we
implement a deeper search over the covisibility graph. More specifically, one can specify the
depth, n, over which the window must span. For example, for n = 1, the function includes all
N0 keyframes that are connected to the current keyframe, and also all the keyframes that are
connected to these N0 keyframes.

Another concern that this larger window addresses is that of the error correlation in the SPS
GNSS output. Multipath in GNSS usually leads to time- and distance-correlated errors that
can last for several meters. It is important that the keyframe window spans a larger distance
than the GNSS error decorrelation distance. This is a promising research area for future work
and is discussed later in Section 4.

Earlier in this section, it was observed how the GNSS/INS-aided-SLAM provided a smooth
output even when the GNSS/INS measurements were quite noisy. Figure 8 shows the altitude
time history of the GNSS/INS GNSS/INS-aided-SLAM trajectories. It is clear that feeding
back the visual SLAM based output to the GNSS/INS can help correct SPS errors, as well as
aid in better estimation of the IMU biases. Closing the loop around visual SLAM is another
promising area of future research.

Figure 9a shows the performance of windowed BA with the proposed windowing scheme with
n = 3. The GNSS/INS-aided-SLAM trajectory with global BA is also shown for comparison in
Figure 9b. The performance penalty as compared to global BA is small, and exacerbated by
the fact that the vehicle made a number of turns in the initial period, thereby cutting off the
window soon for the initial keyframes..

3.3.3. Union of Pose Associated Keyframes (UPAK). Taking keyframes created over different
sessions and performing a collective BA is at the heart of collaborative mapping. This becomes
straightforward once covisibility-based windowed BA is set up. Consider a scenario where a
vehicle revisits an area that has been previously mapped. The vehicle spawns its own keyframes
based on some spawning algorithm. Since the older keyframes will have at least some covisibility



15

0 100 200 300 400 500 600 700 800

Keyframe

158

159

160

161

162

163

164

165

166

A
lt
it
u

d
e

 (
m

e
te

rs
)

INS-aided-SLAM in harsh GNSS conditions

INS

INS-aided-SLAM

Figure 8. Altitude time history of the GNSS/INS and GNSS/INS-aided-SLAM
trajectories.

150

30.3025

155

30.302 -97.733
-97.7335

Latitude (degrees)

-97.73430.3015

Longitude (degrees)

160

-97.7345

A
lt
it
u
d
e
 (

m
e
te

rs
)

-97.735

INS and Windowed BA (n=3)

30.301
-97.7355

-97.736

165

170

INS

Windowed (n=3)

(a) 3D visualization of GNSS/INS and
GNSS/INS-aided-SLAM trajectory obtained
using windowed BA with n = 3.

150

30.3025

155

30.302 -97.733
-97.7335

Latitude (degrees)

-97.73430.3015

Longitude (degrees)

160

-97.7345

A
lt
it
u
d
e
 (

m
e
te

rs
)

-97.735

Global and Windowed BA (n=3)

30.301
-97.7355

-97.736

165

170

Global

Windowed (n=3)

(b) 3D visualization of GNSS/INS-aided-
SLAM trajectories obtained using global BA
and windowed BA with n = 3.

with these new keyframes, they will automatically be connected to these new keyframes. In
fact, in the second session, even keyframes that are geometrically ahead of the vehicle can
also be connected to the newly spawned keyframe, resulting in a strong network of connected
frames. A windowed BA can then be performed on this union of keyframes with associated
GNSS/INS poses.

Figure 10 shows an example of a second session in an already mapped area.



16

Figures 11a and 11b show the SLAM-only output after two sessions through the same area. As
expected the two trajectories are very close to each other. This indicates that the visual SLAM
algorithm is self-consistent. However, as mentioned earlier, any errors in the initial pose used
to map the ECEF frame persist in a SLAM-only system. As a result, the output from both
sessions drifts from the GNSS/INS output.

Another important thing to notice is that the GNSS/INS trajectory is not repeatable over the
two sessions. The two traces are different by as much as 3 meters. This is not unexpected when
using SPS GNSS.

Figures 12a and 12b show the GNSS/INS-aided-SLAM output after the same two sessions.
The value of UPAK is evident in these charts. The two sessions are still self-consistent, as
expected from visual SLAM. But at the same time, including GNSS/INS output from both
sessions minimizes the cost such that the overall map and localization is almost an average
of the two different GNSS/INS trajectories. Two sessions is a small dataset to arrive at any
conclusions about the accuracy of the system, but the initial results are promising. It is also
easy to imagine how this can be extended to multiple vehicles at the same time, with each
vehicle experience a somewhat different multipath environment.

Figure 10. Keyframes from different sessions connected based on covisibility
information.

3.3.4. Localization in Prior Map. Localization in a mapped area is a feature that is already
built in to ORB-SLAM2. Figure 13 shows this feature at work with the data collected using



17

-20 0 20 40 60 80 100 120 140

Local X

0

50

100

150

200

250

L
o
c
a
l 
Z

Union of Keyframes

INS Output (Lap 1)

INS Output (Lap 2)

SLAM-Only (Lap 1)

SLAM-Only (Lap 2)

(a) Top view of SLAM-only output after two
sessions.

-10

-5

0

0

L
o

c
a

l 
Y

Union of Keyframes

20

5

20040 150

Local X

60

Local Z

10080
100 50

120 0

INS Output (Lap 1)

INS Output (Lap 2)

SLAM-Only (Lap 1)

SLAM-Only (Lap 2)

(b) Error in initialization pose persists in
SLAM-only trajectory.

Figure 11. SLAM-only trajectory after two sessions through an area.

-20 0 20 40 60 80 100 120

Local X

0

50

100

150

200

250

L
o
c
a
l 
Z

Union of Pose Associated Keyframes

INS Output (Lap 1)

INS Output (Lap 2)

UPAK (Lap 1)

UPAK (Lap 2)

(a) Top view of the UPAK output.

-10
0

-5

L
o

c
a

l 
Y

0

20

Union of Pose Associated Keyframes

5

20040

Local X

150

Local Z

60
10080

50100
0

INS Output (Lap 1)

INS Output (Lap 2)

UPAK (Lap 1)

UPAK (Lap 2)

(b) UPAK minimizes the cost for both ses-
sions.

Figure 12. Trajectories obtained after BA over UPAK.

the Sensorium. The green keypoints represent matches from the previous map. The abundance
of such matches is encouraging, even if the time difference between the two sessions was not
large. It must be noted that the traffic during the second session is different, and the algorithm
correctly does not match to any features on the vehicles. The blue keypoints are new features
detected in the second session. These features are not added to the map in localization-only
mode, and are only used for visual odometry.

3.3.5. Map Point Scoring. Another attractive application of collaborative mapping is using a
survival-of-the-fittest approach to map points. Over multiple sessions, the system can infer map



18

Figure 13. Localization in a prior map. Green keypoints represent matches
from the prior map. Blue keypoints represent new detected features.

points that are ephemeral and prune them out of the map. This is not currently implemented
in ORB-SLAM2.

Figure 14. Map point scores after two sessions.

Again, using the same strategy with two sessions, Figure 14 shows the time history of visibility
of all map points. The horizontal axis has the number of times a given map point was expected
to be seen, that is, the number of times when the feature was in the field of view of the camera.
The vertical axis has the number of times the feature was actually detected by the system.



19

The chart is cluttered because more than 10,000 time histories have been plotted, but is still
informative. There are four categories of lines of this chart:

(1) The dashed black line is the ideal line, which is just a straight line with slope 1.
(2) Some time histories keep on growing continuously through both sessions (map point

559 in Figure 15). These are good map points that are always found when they are
expected to be found.

(3) Some time histories rise, then become flat, and then start rising again during the next
session (map point 5032 and 9241 in Figure 15). These are map points that were seen
during the first session, then were not found for some period when they should have
been found (because of obstructions, or other factors), but are seen again during the
second session. These are a little hard to see in the cluttered region.

(4) Some time histories rise, but then go flat, and never rise even during the second session
(map point 163 in Figure 15). These must be the map points that were spawned on
transient stationary objects, like stopped cars.

Figure 16 shows the physical locations of the example map point time histories shown in
Figure 15.

0 50 100 150 200 250 300 350 400 450

#Expected

0

50

100

150

200

250

300

350

400

450

#
F

o
u

n
d

Map Point Scoring

MP: 163

MP: 559

MP: 5032

MP: 9241

Figure 15. Map point scores of some selective map points after two sessions.

3.4. Radar Mapping. As mentioned in Section 2, radar sensors are indifferent to changing
weather conditions, are inexpensive (as compared to LiDAR) and can be placed behind the



20

Map Point: 163

(a) Example frame showing map point 163.

Map Point: 559

(b) Example frame showing map point 559.
Map Point: 5032

(c) Example frame showing map point 5032.

Map Point: 9241

(d) Example frame showing map point 9241.

Figure 16. Example frames showing map point locations. Observe that the
map points with long time histories are usually near infinity. Also note that a
spurious map point 163 that spawned on a vehicle dies down quickly, and can
be pruned. Finally, some map points like 5032 are expected to be seen, even
when they might be obstructed by a building. This must be taken care of before
pruning the map point.

bumpers of the vehicle. As a result, they are well established in the automotive industry, but
have not yet been studied much for localization applications.

We believe that a combination of radar and inertial-aided-GNSS is vital for all-weather local-
ization. To this end, in this project we started to explore the possibility of mapping using
radar.

Using the Delphi ESR radar on the Sensorium, we logged the returned radar targets. The radar
natively returns these targets in the body-fixed frame, but the availability of the GNSS/INS
system, and the known transformation between the radar and GNSS/INS, enables us to plot
the radar returns on an ECEF grid.

Figure 17 shows the radar returns as plotted on an ECEF grid. We also show a Google Earth
view of the same area. Note that the radar targets were received over multiple sessions. The
clustering of the targets indicates the repeatability of the radar detections. These results are
encouraging, and we will integrate radar with visual SLAM in the future.



21

Figure 17. Radar returns from multiple sessions plotted on an ECEF grid.



22

4. Future Work

4.1. Error-Correlation-Aware Windowing. As mentioned in Section 3, integration of the
GNSS/INS and visual SLAM needs a windowing technique that is aware of the time correlation
in the GNSS/INS output. In addition, we also need a windowing technique that is aware of the
availability of GNSS data. When GNSS data are sparse or totally unavailable, one needs to
extend the BA window. This kind of apadtive windowing has not been studied in the literature,
and we are in a good position to address this problem.

4.2. Situation-Aware Map Slices. Let us define a situation as a set

{location, time-of-day, day-of-year, weather, extraordinary-event}

We imagine having multiple versions of the map of an area, each applying to a subset of the
above space. Each version is called a slice

Mi =M(Li ⊆ location, Ti ⊆ time-of-day,Di ⊆ day-of-year,Wi ⊆ weather, Ei ⊆ extraordinary-event)

where M = ∪iMi. We may send only these slices to vehicles, or may apply a mask at the
vehicle that will activate a particular slice. There is clearly a benefit to working with slices: a
map slice tailored for a given situation would offer more features, and hence more robustness.

One can also think of composing predictive maps: “Tomorrow will by overcast and the 3rd day
of SWSX. Here is a map slice prepared based on a composition of historical data.”

4.3. Lifelong Mapping. Following the discussion on map point scoring earlier, the feature
point pruning process is fairly clear: if a certain feature point gets downvoted enough (by images
compared against relevant map slices), then the feature point should be eliminated from the
relevant slice.

Consider the steady state when an area has been well mapped. We must still continue to look
out for new features. The strategy for birthing new map points in a mapped area is less clear.
It depends on how new keyframes will be introduced in a mapped area.

4.4. Non-Real-Time Mapping in Exploration. Real-time localization in unmapped ar-
eas may not be a strict requirement for automated vehicles. In our experiments with BA,
we observed that performing infrequent BA iterations with large batches of keyframes led to
reasonable results, even with poor initial guesses. Thus, a possible architecture is to forgo
localization as a real-time capability in unexplored regions, and perform BA with large window
of keyframes. Once a map has been created using this strategy, then further refinement of the
map and localization within the map can be performed in real-time.

4.5. Radar Mapping. Radar mapping has shown promise, but has not been included in the
vision-based maps yet. We plan on implementing this in the next phase of the project.



23

References

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort,
U. Muller, J. Zhang, et al., “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[2] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” in Mixed and Aug-
mented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on, pp. 225–234, IEEE,
2007.

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile and accurate monocular
SLAM system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[4] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: an open-source SLAM system for monocular, stereo and
RGB-D cameras,” arXiv preprint arXiv:1610.06475, 2016.

[5] H. Strasdat, J. Montiel, and A. J. Davison, “Scale drift-aware large scale monocular SLAM,” Robotics:
Science and Systems VI, 2010.

[6] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular SLAM,” in European
Conference on Computer Vision, pp. 834–849, Springer, 2014.

[7] M. Cummins and P. Newman, “Appearance-only SLAM at large scale with FAB-MAP 2.0,” The Interna-
tional Journal of Robotics Research, vol. 30, no. 9, pp. 1100–1123, 2011.

[8] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-time single camera SLAM,”
IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 6, 2007.

[9] E. Eade and T. Drummond, “Scalable monocular SLAM,” in Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition-Volume 1, pp. 469–476, IEEE Computer
Society, 2006.

[10] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking and mapping in real-time,”
in Computer Vision (ICCV), 2011 IEEE International Conference on, pp. 2320–2327, IEEE, 2011.

[11] H. Strasdat, J. M. Montiel, and A. J. Davison, “Visual SLAM: why filter?,” Image and Vision Computing,
vol. 30, no. 2, pp. 65–77, 2012.

[12] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustmenta modern synthesis,”
in International workshop on vision algorithms, pp. 298–372, Springer, 1999.

[13] F. Schuster, C. Keller, M. Rapp, M. Haueis, and C. Curio, “Landmark based radar slam using graph
optimization,” in Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference
on, pp. 2559–2564, IEEE, 2016.

[14] M. Barjenbruch, D. Kellner, J. Klappstein, J. Dickmann, and K. Dietmayer, “Joint spatial-and Doppler-
based ego-motion estimation for automotive radars,” in Intelligent Vehicles Symposium (IV), 2015 IEEE,
pp. 839–844, IEEE, 2015.

[15] P. D. Groves, Principles of GNSS, inertial, and multisensor integrated navigation systems. Artech house,
2013.

[16] J. Kouba and P. Héroux, “Precise point positioning using IGS orbit and clock products,” GPS solutions,
vol. 5, no. 2, pp. 12–28, 2001.

[17] D. P. Shepard and T. E. Humphreys, “High-precision globally-referenced position and attitude via a fu-
sion of visual SLAM, carrier-phase-based GPS, and inertial measurements,” in Position, Location and
Navigation Symposium-PLANS 2014, 2014 IEEE/ION, pp. 1309–1328, IEEE, 2014.

The University of Texas at Austin

E-mail address: lakshay.narula@utexas.edu


	Title page
	Center information
	Tech.Rpt.Doc.Pg.
	Disclaimer
	Acknowledgements
	1. Introduction
	2. Enabling Technologies and Prior Work
	3. Project Accomplishments
	4. Future Work
	References

